Automatic continuity for weakly decomposable operators
نویسندگان
چکیده
منابع مشابه
On the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کاملMore about Weakly Decomposable Inequality Measures
This note proposes a generalization of the weak decomposition axiom recently introduced by Ebert (2010) [U. Ebert (2010), The decomposition of inequality reconsidered: Weakly decomposable measures, Mathematical Social Sciences 60(2): 94-103]. The generalization of this axiom relies on the introduction of weaker weighting functions based both on the size of the population and the mean income. Re...
متن کاملon the decomposable numerical range of operators
let $v$ be an $n$-dimensional complex inner product space. suppose $h$ is a subgroup of the symmetric group of degree $m$, and $chi :hrightarrow mathbb{c} $ is an irreducible character (not necessarily linear). denote by $v_{chi}(h)$ the symmetry class of tensors associated with $h$ and $chi$. let $k(t)in (v_{chi}(h))$ be the operator induced by $tin text{end}(v)$. the...
متن کاملBanach module valued separating maps and automatic continuity
For two algebras $A$ and $B$, a linear map $T:A longrightarrow B$ is called separating, if $xcdot y=0$ implies $Txcdot Ty=0$ for all $x,yin A$. The general form and the automatic continuity of separating maps between various Banach algebras have been studied extensively. In this paper, we first extend the notion of separating map for module case and then we give a description of a linear se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1995
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1995.171.245